Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 5(1): 102919, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38427567

ABSTRACT

Early-life nutrition fundamentally influences newborn development and health. Here, we present a protocol for nutritional intervention in neonatal rats using the "pup-in-a-cup" artificial rearing system. We describe steps for rat milk substitute preparation, cheek cannulation and maintenance, and nutritional manipulation during the suckling period. This protocol enables investigation into the role of nutritional factors in newborns by artificially rearing rats away from the mother with experimental diets starting at postnatal day 4 for up to 18 days. For complete details on the use and execution of this protocol, please refer to Wang et al.,1 Choudhary et al.,2 and Mu et al.3,4.


Subject(s)
Animals, Newborn , Rats , Animals
2.
Epilepsia ; 65(2): 266-280, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38036453

ABSTRACT

The devastating developmental and epileptic encephalopathy of infantile epileptic spasms syndrome (IESS) has numerous causes, including, but not limited to, brain injury, metabolic, and genetic conditions. Given the stereotyped electrophysiologic, age-dependent, and clinical findings, there likely exists one or more final common pathways in the development of IESS. The identity of this final common pathway is unknown, but it may represent a novel therapeutic target for infantile spasms. Previous research on IESS has focused largely on identifying the neuroanatomic substrate using specialized neuroimaging techniques and cerebrospinal fluid analysis in human patients. Over the past three decades, several animal models of IESS were created with an aim to interrogate the underlying pathogenesis of IESS, to identify novel therapeutic targets, and to test various treatments. Each of these models have been successful at recapitulating multiple aspects of the human IESS condition. These animal models have implicated several different molecular pathways in the development of infantile spasms. In this review we outline the progress that has been made thus far using these animal models and discuss future directions to help researchers identify novel treatments for drug-resistant IESS.


Subject(s)
Brain Injuries , Spasms, Infantile , Animals , Humans , Spasms, Infantile/drug therapy , Disease Models, Animal , Syndrome , Spasm
3.
Nutrients ; 14(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35684010

ABSTRACT

The ketogenic diet (KD) is an effective treatment for infantile spasms syndrome (IS). However, the KD has implications for somatic growth, development, and the gut microbiota. The impact of incorporating a prebiotic fiber (PRE, oligofructose-enriched inulin, 0.8 g/dL) into a KD diet on spasms, developmental milestones, fecal gut microbiota, metabolites, and hippocampal mitochondrial metabolism were examined. Following IS induction, animals were randomized to KD or KD + PRE diets. A third group without IS and suckled by dams was included as a normally developing reference group (R). PRE inclusion decreased ketones and increased circulating glucose levels but had no impact on spasms. In the liver, PRE increased triglyceride concentrations, decreased carnitine levels, and downregulated genes encoding enzymes responsible for ketogenesis. In the hippocampus, PRE increased glutathione levels but did not affect the maximal respiratory capacity of mitochondria. Analysis of the gut microbiota showed that KD + PRE increased microbial richness and the relative abundance of Bifidobacterium pseudolongum and Lactobacillus johnsonii. No differences in developmental milestones (i.e., surface righting, negative geotaxis, and open field behavior) were observed between KD and KD + PRE, except for ultrasonic vocalizations that were more frequent in KD + PRE. In summary, PRE did not impact spasms or developmental outcomes, but was effective in improving both metabolic parameters and gut microbiota diversity.


Subject(s)
Diet, Ketogenic , Spasms, Infantile , Animals , Metabolome , Prebiotics , Rodentia , Seizures , Spasm , Syndrome
4.
JCI Insight ; 7(12)2022 06 22.
Article in English | MEDLINE | ID: mdl-35730569

ABSTRACT

Infantile spasms syndrome (IS) is a devastating early-onset epileptic encephalopathy associated with poor neurodevelopmental outcomes. When first-line treatment options, including adrenocorticotropic hormone and vigabatrin, are ineffective, the ketogenic diet (KD) is often employed to control seizures. Since the therapeutic impact of the KD is influenced by the gut microbiota, we examined whether targeted microbiota manipulation, mimicking changes induced by the KD, would be valuable in mitigating seizures. Employing a rodent model of symptomatic IS, we show that both the KD and antibiotic administration reduce spasm frequency and are associated with improved developmental outcomes. Spasm reductions were accompanied by specific gut microbial alterations, including increases in Streptococcus thermophilus and Lactococcus lactis. Mimicking the fecal microbial alterations in a targeted probiotic, we administered these species in a 5:1 ratio. Targeted probiotic administration reduced seizures and improved locomotor activities in control diet-fed animals, similar to KD-fed animals, while a negative control (Ligilactobacillus salivarius) had no impact. Probiotic administration also increased antioxidant status and decreased proinflammatory cytokines. Results suggest that a targeted probiotic reduces seizure frequency, improves locomotor activity in a rodent model of IS, and provides insights into microbiota manipulation as a potential therapeutic avenue for pediatric epileptic encephalopathies.


Subject(s)
Gastrointestinal Microbiome , Spasms, Infantile , Animals , Anticonvulsants/therapeutic use , Humans , Seizures/drug therapy , Spasm/drug therapy , Spasms, Infantile/drug therapy , Syndrome
5.
J Clin Neurophysiol ; 39(7): 529-537, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35323127

ABSTRACT

SUMMARY: The infantile spasms (IS) syndrome is a catastrophic developmental epileptic encephalopathy syndrome characterized by an age-specific expression of epileptic spasms that are associated with extremely abnormal, oftentimes described as chaotic, interictal EEG pattern known as hypsarrhythmia. Patients with IS generally have poor neurodevelopmental outcomes, in large part because of the frequent epileptic spasms and interictal EEG abnormalities. Current first-line treatments such as adrenocorticotropic hormone or vigabatrin are often ineffective and are associated with major toxic side effects. There is therefore a need for better and safer treatments for patients with IS, especially for the intractable population. Hope is on the horizon as, over the past 10 years, there has been robust progress in the development of etiology-specific animal models of IS. These models have been used to identify potential new treatments for IS and are beginning to provide some important insights into the pathophysiological substrates for this disease. In this review, we will highlight strengths and weaknesses of the currently available animal models of IS in addition to new insights into the pathophysiology and treatment options derived from these models.


Subject(s)
Spasms, Infantile , Animals , Humans , Spasms, Infantile/drug therapy , Vigabatrin/therapeutic use , Adrenocorticotropic Hormone/therapeutic use , Models, Animal , Spasm/chemically induced , Spasm/complications , Spasm/drug therapy , Electroencephalography , Anticonvulsants/therapeutic use
6.
EBioMedicine ; 76: 103833, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35090836

ABSTRACT

BACKGROUND: The infantile spasms syndrome is an early-onset epileptic encephalopathy presenting in the first 2 years of life, often with severe developmental consequences. The role of the gut microbiota and metabolism in infantile spasms remains unexplored. METHODS: Employing a brain injury neonatal rat model of infantile spasms intractable to anticonvulsant medication treatments, we determined how the ketogenic diet and antibiotics affected specific microbial communities and the resultant circulating factors that confer spasms protection in the infantile spasms model. To confirm a role of kynurenine metabolism pathway in spasms protection, indoleamine 2,3-dioxygenase 1 was pharmacologically inhibited and comprehensive metabolomics was applied. FINDINGS: We show that antibiotics reduced spasms and improved the effectiveness of the ketogenic diet when given in combination. Examination of the gut microbiota and metabolomics showed the downregulation of indoleamine 2,3-dioxygenase 1 and upregulation of hippocampal kynurenic acid, a metabolite with antiepileptic effects. To further test the involvement of indoleamine 2,3-dioxygenase 1, a specific antagonist 1-methyltryptophan and minocycline, an antibiotic and inhibitor of kynurenine formation from tryptophan, were administered, respectively. Both treatments were effective in reducing spasms and elevating hippocampal kynurenic acid. A fecal microbiota transplant experiment was then performed to examine the contribution of the gut microbiota on spasm mitigation. Transplant of feces of ketogenic diet animals into normal diet animals was effective in reducing spasms. INTERPRETATION: These results highlight the importance of tryptophan-kynurenine metabolism in infantile spasms and provide evidence for new-targeted therapies such as indoleamine 2,3-dioxygenase 1 inhibition or microbiota manipulation to promote kynurenic acid production as a strategy to reduce spasms in infantile spasms. FUNDING: This study was funded by the Alberta Children's Hospital Research Institute and the Owerko Centre.


Subject(s)
Gastrointestinal Microbiome , Spasms, Infantile , Animals , Disease Models, Animal , Humans , Kynurenine/metabolism , Kynurenine/therapeutic use , Rats , Seizures , Spasm , Spasms, Infantile/drug therapy , Spasms, Infantile/therapy , Tryptophan/metabolism
7.
Brain Commun ; 3(4): fcab189, 2021.
Article in English | MEDLINE | ID: mdl-34734183

ABSTRACT

Infantile spasms (IS) syndrome is a catastrophic, epileptic encephalopathy of infancy that is often refractory to current antiepileptic therapies. The ketogenic diet (KD) has emerged as an alternative treatment for patients with medically intractable epilepsy, though the prospective validity and mechanism of action for IS remains largely unexplored. We investigated the KD's efficacy as well as its mechanism of action in a rodent model of intractable IS. The spasms were induced using the triple-hit paradigm and the animals were then artificially reared and put on either the KD (4:1 fats: carbohydrate + protein) or a control milk diet (CM; 1.7:1). 31Phosphorus magnetic resonance spectroscopy (31P MRS) and head-out plethysmography were examined in conjunction with continuous video-EEG behavioural recordings in lesioned animals and sham-operated controls. The KD resulted in a peripheral ketosis observed both in the blood and urine. The KD led to a robust reduction in the frequency of spasms observed, with approximately a 1.5-fold increase in the rate of survival. Intriguingly, the KD resulted in an intracerebral acidosis as measured with 31P MRS. In addition, the respiratory profile of the lesioned rats on the KD was significantly altered with slower, deeper and longer breathing, resulting in decreased levels of expired CO2. Sodium bicarbonate supplementation, acting as a pH buffer, partially reversed the KD's protective effects on spasm frequency. There were no differences in the mitochondrial respiratory profiles in the liver and brain frontal cortex measured between the groups, supporting the notion that the effects of the KD on breathing are not entirely due to changes in intermediary metabolism. Together, our results indicate that the KD produces its anticonvulsant effects through changes in respiration leading to intracerebral acidosis. These findings provide a novel understanding of the mechanisms underlying the anti-seizure effects of the KD in IS. Further research is required to determine whether the effects of the KD on breathing and intracerebral acid-base balance are seen in other paediatric models of epilepsy.

8.
Acta Pol Pharm ; 63(4): 307-10, 2006.
Article in English | MEDLINE | ID: mdl-17203869

ABSTRACT

Oral administration of 25 and 50 mg of aflatoxin in 0.2 mL olive oil/animal/day for 30 days caused dose-dependent and significantly higher lipid peroxidation in the kidney of aflatoxin-treated mice than in the controls. The levels of non-enzymatic antioxidant such as glutathione as well as the enzymatic antioxidants such as superoxide dismutase, glutathione peroxidase and catalase were significantly lower in the kidney of aflatoxin-treated mice than in the controls. Black tea extract (2%) treatment significantly ameliorates aflatoxin-induced lipid peroxidation, which could be due to higher enzymatic and non-enzymatic antioxidants in the kidney of mice as compared with that given aflatoxin alone. These findings suggest that black tea extract treatment significantly ameliorates aflatoxin-induced lipid peroxidation in the kidney of mice.


Subject(s)
Aflatoxins/toxicity , Kidney/metabolism , Lipid Peroxidation/drug effects , Tea/chemistry , Aflatoxins/biosynthesis , Animals , Aspergillus/genetics , Chromatography, Thin Layer , Kidney/drug effects , Male , Mice
9.
Food Chem Toxicol ; 43(1): 99-104, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15582201

ABSTRACT

We have evaluated the ameliorative effect of black tea extract on aflatoxin-induced lipid peroxidation in the liver of mice. Adult male albino mice were orally administered with 25 and 50 microg of aflatoxin in 0.2 ml olive oil/animal/day for 30 days. Results revealed dose-dependent and significantly (p<0.05) higher lipid peroxidation in the liver of aflatoxin-treated mice than that of vehicle control. As compared with vehicle control, the levels of non-enzymatic antioxidants such as glutathione and ascorbic acid, as well as the enzymatic antioxidants such as superoxide dismutase, glutathione peroxidase and catalase were significantly (p<0.05) lowered in the liver of aflatoxin-treated mice. Oral administration of two percent aqueous black tea extract along with aflatoxin for 30 days (groups 6 and 7) caused significant (p<0.05) amelioration in aflatoxin-induced lipid peroxidation by increasing significantly (p<0.05) the activities of enzymatic (superoxide dismutase, glutathione peroxidase, catalase) and contents of non-enzymatic (glutathione and ascorbic acid) antioxidants in the liver of mice as compared with those given aflatoxin alone (groups 4 and 5). Thus, oral administration of black tea along with aflatoxin significantly (p<0.05) ameliorates aflatoxin-induced lipid peroxidation in the liver of mice.


Subject(s)
Aflatoxins/toxicity , Antioxidants/pharmacology , Lipid Peroxidation/drug effects , Liver/metabolism , Plant Extracts/pharmacology , Tea/chemistry , Administration, Oral , Animals , Ascorbic Acid/metabolism , Catalase/metabolism , Dose-Response Relationship, Drug , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Liver/drug effects , Male , Mice , Random Allocation , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...